The apolar bilinear form in geometric modeling
نویسنده
چکیده
Some recent methods of Computer Aided Geometric Design are related to the apolar bilinear form, an inner product on the space of homogeneous multivariate polynomials of a fixed degree, already known in 19th century invariant theory. Using a generalized version of this inner product, we derive in a straightforward way some of the recent results in CAGD, like Marsden’s identity, the expression for the de Boor-Fix functionals, and recursion schemes for the computation of B-patches and their derivatives.
منابع مشابه
Bézier-like Parametrizations of Spheres and Cyclides Using Geometric Algebra
We introduce new Bézier-like formulas with quaternionic weights for rational curves and surfaces in Euclidean 3-space. They are useful for representation of Möbius invariant geometric objects. Any Bézier curves and surfaces on 2-spheres can be converted to the quaternionic Bézier (QB) form of twice lower degree. Our focus is on bilinear QB-surfaces: we derive their implicitization formula and s...
متن کاملMulti soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension
As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...
متن کاملGeometric analysis of a class of constrained mechanical control systems in the nonzero velocity setting ⋆
We obtain an intrinsic vector-valued symmetric bilinear form that can be associated with an underactuated constrained mechanical control system. We determine properties of the form that serve as sufficient conditions for driving a constrained mechanical system underactuated by one control to an ǫ-neighborhood of rest from an arbitrary initial configuration and velocity. We also determine proper...
متن کاملRational Bézier Formulas with Quaternion and Clifford Algebra Weights
We consider Bézier-like formulas with weights in quaternion and geometric (Clifford) algebra for parametrizing rational curves and surfaces. The simplest non-trivial quaternionic case of bilinear formulas for surface patches is studied in detail. Such formulas reproduce well known biquadratic parametrizations of principal Dupin cyclide patches, and are characterized in general as special Darbou...
متن کاملHecke algebras as subalgebras of Clifford geometric algebras of multivectors
Clifford geometric algebras of multivectors are introduced which exhibit a bilinear form which is not necessarily symmetric. Looking at a subset of bi-vectors in Cl(IK, B), we proof that theses elements generate the Hecke algebra HIK(n + 1, q) if the bilinear form B is chosen appropriately. This shows, that q-quantization can be generated by Clifford multivector objects which describe usually c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000